Stimulation of Na+ transport by AVP is independent of PKA phosphorylation of the Na-K-ATPase in collecting duct principal cells.
نویسندگان
چکیده
Arginine-vasopressin (AVP) stimulates Na(+) transport and Na-K-ATPase activity via cAMP-dependent PKA activation in the renal cortical collecting duct (CCD). We investigated the role of the Na-K-ATPase in the AVP-induced stimulation of transepithelial Na(+) transport using the mpkCCD(c14) cell model of mammalian collecting duct principal cells. AVP (10(-9) M) stimulated both the amiloride-sensitive transepithelial Na(+) transport measured in intact cells and the maximal Na pump current measured by the ouabain-sensitive short-circuit current in apically permeabilized cells. These effects were associated with increased Na-K-ATPase cell surface expression, measured by Western blotting after streptavidin precipitation of biotinylated cell surface proteins. The effects of AVP on Na pump current and Na-K-ATPase cell surface expression were dependent on PKA activity but independent of increased apical Na(+) entry. Time course experiments revealed that in response to AVP, the cell surface expression of both endogenous Na-K-ATPase and hybrid Na pumps containing a c-myc-tagged wild-type human alpha(1)-subunit increased transiently. Na-K-ATPase cell surface expression was maximal after 30 min and then declined toward baseline after 60 min. Immunoprecipitation experiments showed that PKA activation did not alter total phosphorylation levels of the endogenous Na-K-ATPase alpha-subunit. In addition, mutation of the PKA phosphorylation site (S943A or S943D) did not alter the time course of increased cell surface expression of c-myc-tagged Na-K-ATPase in response to AVP or to dibutyryl-cAMP. Therefore, stimulation of Na-K-ATPase cell surface expression by AVP is dependent on PKA but does not rely on alpha(1)-subunit phosphorylation on serine 943 in the collecting duct principal cells.
منابع مشابه
Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells.
In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and...
متن کاملCellular responses to steroids in the enhancement of Na+ transport by rat collecting duct cells in culture. Differences between glucocorticoid and mineralocorticoid hormones.
It has recently been discovered that both mineralocorticoid (MC) and glucocorticoid (GC) hormones can stimulate electrogenic Na+ absorption by mammalian collecting duct cells in culture. In primary cultures of rat inner medullary collecting duct (IMCD) cells, 24-h incubation with either MC or GC agonist stimulates Na+ transport approximately threefold. We have now determined that the effects we...
متن کاملApical ammonia transport by the mouse inner medullary collecting duct cell (mIMCD-3).
The collecting duct is the primary site of urinary ammonia secretion; the current study determines whether apical ammonia transport in the mouse inner medullary collecting duct cell (mIMCD-3) occurs via nonionic diffusion or a transporter-mediated process and, if the latter, presents the characteristics of this apical ammonia transport. We used confluent cells on permeable support membranes and...
متن کاملRegulation of Na+, K(+)-ATPase in the rat outer medullary collecting duct during potassium depletion.
Because in outer medullary collecting ducts (OMCD) of K(+)-depleted rats, K+ secretion is abolished, whereas Na+, K(+)-ATPase, which energizes this secretion, is markedly stimulated, it has been proposed that Na+, K(+)-ATPase was mislocated to the apical cell membrane and energized K+ reabsorption. This hypothesis has been supported by paradoxical effects of ouabain in K(+)-depleted compared wi...
متن کاملApical proton secretion by the inner stripe of the outer medullary collecting duct.
The inner stripe of outer medullary collecting duct (OMCDis) is unique among collecting duct segments because both intercalated cells and principal cells secrete protons and reabsorb luminal bicarbonate. The current study characterized the mechanisms of OMCDis proton secretion. We used in vitro microperfusion, and we separately studied the principal cell and intercalated cell using differential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 5 شماره
صفحات -
تاریخ انتشار 2005